Política > Sanidad hoy

David Julius y Ardem Patapoutian ganan el Premio Nobel de Medicina 2021

Los galardonados se impusieron a los favoritos Katalin Karico y Drew Weissman, pioneros de las vacunas ARN

David Julius y Ardem Patapoutian.

04 oct 2021. 11.30H
SE LEE EN 7 minutos
El Premio Nobel de Medicina ha sido otorgado este lunes a David Julius y Ardem Patapoutian “por sus descubrimientos de los receptores de la temperatura y el tacto”, en la apertura de la temporada 2021 de los célebres galardones.

Los galardonados se impusieron a los favoritos, la húngara Katalin Karico y el estadounidense Drew Weissman, pioneros de las vacunas ARN y profesores de la Universidad de Pensilvania.

El jurado del Premio Nobel ha justificado el galardón subrayando que Julius y Patapoutian “han explicado cómo el calor, el frío y el tacto pueden iniciar señales en nuestro sistema nervioso. Los canales iónicos identificados son importantes para muchos procesos fisiológicos y enfermedades”.

También, destacaron que las investigaciones de los ganadores se centran en dilucidar sus funciones en una variedad de procesos fisiológicos y sus resultados se utilizan para desarrollar tratamientos para una serie de enfermedades, incluido el dolor crónico. Además del reconocimiento y el honor de recibir el premio más prestigioso de la Medicina, el galardón está dotado con nueve millones de coronas suecas, unos 940.000 euros.

Hace un año, los premiados fueron los investigadores William G. Kaelin (EEUU), Sir Peter J. Ratcliffe (Reino Unido) y Gregg L. Semenza (EEUU). Aquel galardón se debió a sus descubrimientos sobre cómo las células son capaces de reconocer y adaptarse a la disponibilidad de oxígeno.

Trayectoria de David Julius


Julius nació en 1955 en Nueva York (Estados Unidos). Fue contratado por la Universidad de California en San Francisco en 1989, donde ahora es profesor. A finales de los 90, vio la posibilidad de realizar grandes avances al analizar cómo el compuesto químico capsaicina provoca la sensación de ardor que sentimos al entrar en contacto con los chiles.

Ya se sabía que la capsaicina activaba las células nerviosas que provocan la sensación de dolor, pero la forma en que esta sustancia química ejercía realmente esta función era un enigma sin resolver. Julius y sus colaboradores crearon una biblioteca de millones de fragmentos de ADN correspondientes a los genes que se expresan en las neuronas sensoriales que pueden reaccionar al dolor, el calor y el tacto. Julius y sus colegas plantearon la hipótesis de que la biblioteca incluiría un fragmento de ADN que codificaría la proteína capaz de reaccionar a la capsaicina.

Expresaron genes individuales de esta colección en células cultivadas que normalmente no reaccionan a la capsaicina. Tras una laboriosa búsqueda, se identificó un único gen capaz de hacer que las células fueran sensibles a la capsaicina. Se había encontrado el gen de la capsaicina. Otros experimentos revelaron que el gen identificado codificaba una nueva proteína de canal iónico, y este receptor de capsaicina recién descubierto recibió posteriormente el nombre de TRPV1. Cuando Julius investigó la capacidad de la proteína para responder al calor, se dio cuenta de que había descubierto un receptor sensor de calor que se activa a temperaturas percibidas como dolorosas.

El descubrimiento del TRPV1 supuso un gran avance que abrió el camino para desentrañar otros receptores sensores de la temperatura. De forma independiente, Julius y Patapoutian utilizaron la sustancia química mentol para identificar el TRPM8, un receptor que se activaba con el frío. Se identificaron otros canales iónicos relacionados con el TRPV1 y el TRPM8 y se comprobó que se activaban con diferentes temperaturas.

Muchos laboratorios llevaron a cabo programas de investigación sobre el papel de estos canales en la sensación térmica utilizando ratones manipulados genéticamente que carecían de estos genes recién descubiertos. El descubrimiento del TRPV1 por parte de David Julius fue el avance que permitió comprender cómo las diferencias de temperatura pueden inducir señales eléctricas en el sistema nervioso.

Trayectoria de Ardem Patapoutian


Patapoutian nació en 1967 en Beirut (Líbano). En su juventud, se trasladó de un Beirut devastado por la guerra a Los Ángeles (Estados Unidos) y se doctoró en 1996 en el Instituto Tecnológico de California en en Pasadena. Desde el año 2000, es científico en Scripps Research, donde ahora es profesor.

Mientras se desarrollaban los mecanismos de la sensación de temperatura, seguía sin estar claro cómo los estímulos mecánicos podían convertirse en nuestros sentidos del tacto y la presión. Los investigadores ya habían encontrado sensores mecánicos en las bacterias, pero los mecanismos que subyacen al tacto en los vertebrados seguían siendo desconocidos. Patapoutian quería identificar los esquivos receptores que se activan con los estímulos mecánicos.

Junto con sus colaboradores, identificó por primera vez una línea celular que emitía una señal eléctrica medible cuando se pinchaban células individuales con una micropipeta. Se asumió que el receptor activado por la fuerza mecánica es un canal iónico y en un siguiente paso se identificaron 72 genes candidatos que codifican posibles receptores.

Estos genes se inactivaron uno a uno para descubrir el gen responsable de la mecanosensibilidad en las células estudiadas. Tras una ardua búsqueda, Patapoutian y sus colaboradores lograron identificar un único gen cuyo silenciamiento hacía que las células fueran insensibles a los pinchazos con la micropipeta.

Se había descubierto un nuevo canal iónico mecanosensible totalmente desconocido y se le dio el nombre de Piezo1, por la palabra griega que significa presión. Por su similitud con Piezo1, se descubrió un segundo gen al que se denominó Piezo2. Se descubrió que las neuronas sensoriales expresaban altos niveles de Piezo2 y estudios posteriores establecieron firmemente que Piezo1 y Piezo2 son canales iónicos que se activan directamente por el ejercicio de la presión sobre las membranas celulares.



El avance de Patapoutian dio lugar a una serie de trabajos de su grupo y de otros, que demostraron que el canal iónico Piezo2 es esencial para el sentido del tacto. Además, se demostró que Piezo2 desempeña un papel fundamental en la detección de la posición y el movimiento del cuerpo, de importancia crítica, conocida como propiocepción. En trabajos posteriores, se ha demostrado que los canales Piezo1 y Piezo2 regulan otros procesos fisiológicos importantes, como la presión arterial, la respiración y el control de la vejiga urinaria.

Los revolucionarios descubrimientos de los canales TRPV1, TRPM8 y Piezo por parte de los galardonados con el Premio Nobel de este año han permitido comprender cómo el calor, el frío y la fuerza mecánica pueden iniciar los impulsos nerviosos que nos permiten percibir y adaptarnos al mundo que nos rodea.

Los canales TRP son fundamentales para nuestra capacidad de percibir la temperatura. El canal Piezo2 nos dota del sentido del tacto y de la capacidad de sentir la posición y el movimiento de las partes de nuestro cuerpo. Los canales TRP y Piezo contribuyen también a numerosas funciones fisiológicas adicionales que dependen de la percepción de la temperatura o de los estímulos mecánicos. Este conocimiento se está utilizando para desarrollar tratamientos para una amplia gama de enfermedades, incluyendo el dolor crónico.


Aunque pueda contener afirmaciones, datos o apuntes procedentes de instituciones o profesionales sanitarios, la información contenida en Redacción Médica está editada y elaborada por periodistas. Recomendamos al lector que cualquier duda relacionada con la salud sea consultada con un profesional del ámbito sanitario.